How to create, structure, maintain and update data codebooks in R?

Related searches

In the interest of replication I like to keep a codebook with meta data for each data frame. A data codebook is:

a written or computerized list that provides a clear and comprehensive description of the variables that will be included in the database. Marczyk et al (2010)

I like to document the following attributes of a variable:

  • name
  • description (label, format, scale, etc)
  • source (e.g. World bank)
  • source media (url and date accessed, CD and ISBN, or whatever)
  • file name of the source data on disk (helps when merging codebooks)
  • notes

For example, this is what I am implementing to document the variables in data frame mydata1 with 8 variables: <- data.frame(,
     label=c("Label 1",
              "State name",
              "Personal identifier",
              "Income per capita, thousand of US$, constant year 2000 prices",
              "Unique id",
              "Calendar year",
      filename = rep("unknown",length(mydata1)),
      notes = rep("unknown",length(mydata1))

I write a different codebook for each data set I read. When I merge data frames I will also merge the relevant aspects of their associated codebook, to document the final database. I do this by essentially copy pasting the code above and changing the arguments.

You could add any special attribute to any R object with the attr function. E.g.:

x <- cars
attr(x,"source") <- "Ezekiel, M. (1930) _Methods of Correlation Analysis_.  Wiley."

And see the given attribute in the structure of the object:

> str(x)
'data.frame':   50 obs. of  2 variables:
 $ speed: num  4 4 7 7 8 9 10 10 10 11 ...
 $ dist : num  2 10 4 22 16 10 18 26 34 17 ...
 - attr(*, "source")= chr "Ezekiel, M. (1930) _Methods of Correlation Analysis_.  Wiley."

And could also load the specified attribute with the same attr function:

> attr(x, "source")
[1] "Ezekiel, M. (1930) _Methods of Correlation Analysis_.  Wiley."

If you only add new cases to your data frame, the given attribute will not be affected (see: str(rbind(x,x)) while altering the structure will erease the given attributes (see: str(cbind(x,x))).

UPDATE: based on comments

If you want to list all non-standard attributes, check the following:


This will list all non-standard attributes (standard are: names, row.names, class in data frames).

Based on that, you could write a short function to list all non-standard attributes and also the values. The following does work, though not in a neat way... You could improve it and make up a function :)

First, define the uniqe (=non standard) attributes:

uniqueattrs <- setdiff(names(attributes(x)),c("names","row.names","class"))

And make a matrix which will hold the names and values:

attribs <- matrix(0,0,2)

Loop through the non-standard attributes and save in the matrix the names and values:

for (i in 1:length(uniqueattrs)) {
    attribs <- rbind(attribs, c(uniqueattrs[i], attr(x,uniqueattrs[i])))

Convert the matrix to a data frame and name the columns:

attribs <-
names(attribs) <- c('name', 'value')

And save in any format, eg.:

write.csv(attribs, 'foo.csv')

To your question about the variable labels, check the read.spss function from package foreign, as it does exactly what you need: saves the value labels in the attrs section. The main idea is that an attr could be a data frame or other object, so you do not need to make a unique "attr" for every variable, but make only one (e.g. named to "varable labels") and save all information there. You could call like: attr(x, "variable.labels")['foo'] where 'foo' stands for the required variable name. But check the function cited above and also the imported data frames' attributes for more details.

I hope these could help you to write the required functions in a lot neater way than I tried above! :)

Tutorial • codebook, and web app make it possible to generate rich codebooks in a few minutes and just Package on CRAN index.html explaining the structure and nature of the dataset, also helps to explain and data frequently in order to find relevant variables, refresh their memory,� documents the data to make sure that the data is well understood and reusable in the future. Here we will show how to create codebooks in R using the dataMaid packages. The help pages for the datasets in R packages usually provide thorough information although the level of detail may vary quite substantially from dataset to dataset.

A more advanced version would be to use S4 classes. For example, in bioconductor the ExpressionSet is used to store microarray data with its associated experimental meta data.

The MIAME object described in Section 4.4, looks very similar to what you are after:

experimentData <- new("MIAME", name = "Pierre Fermat",
          lab = "Francis Galton Lab", contact = "pfermat@lab.not.exist",
          title = "Smoking-Cancer Experiment", abstract = "An example ExpressionSet",
          url = "www.lab.not.exist", other = list(notes = "Created from text files"))

[PDF] How to automatically document data with the codebook , Package on CRAN time, the high-level summary, ideally combined with text explaining the structure forth between the documentation of the data and the data itself, be that to refresh their memory The static label browser allows you to keep executing R code. @Dason, I'm interested to find a solution, using only R, that enables me to automatically create a data codebook (whenever I pull data from a database). I prioritize a simple software set up to a formatted pdf output, I might have gotten too optimistic when I saw the documentation that came with mtcars.

The comment() function might be useful here. It can set and query a comment attribute on an object, but has the advantage other normal attributes of not being printed.

dat <- data.frame(A = 1:5, B = 1:5, C = 1:5)
comment(dat$A) <- "Label 1"
comment(dat$B) <- "Label 2"
comment(dat$C) <- "Label 3"
comment(dat) <- "data source is, sampled on 1-Jan-2011"

which gives:

> dat
  A B C
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
> dat$A
[1] 1 2 3 4 5
> comment(dat$A)
[1] "Label 1"
> comment(dat)
[1] "data source is, sampled on 1-Jan-2011"

Example of merging:

> dat2 <- data.frame(D = 1:5)
> comment(dat2$D) <- "Label 4"
> dat3 <- cbind(dat, dat2)
> comment(dat3$D)
[1] "Label 4"

but that looses the comment on dat():

> comment(dat3)

so those sorts of operations would need handling explicitly. To truly do what you want, you'll probably either need to write special versions of functions you use that maintain the comments/metadata during extraction/merge operations. Alternatively you might want to look into producing your own classes of objects - say as a list with a data frame and other components holding the metadata. Then write methods for the functions you want that preserve the meta data.

An example along these lines is the zoo package which generates a list object for a time series with extra components holding the ordering and time/date info etc, but still works like a normal object from point of view of subsetting etc because the authors have provided methods for functions like [ etc.

[PDF] How to automatically generate rich codebooks from study , How to automatically document data with the codebook package to facilitate data re-use. datasets that are the product of merging and processing raw data retain the necessary metadata. Named vectors are created using the c() function. rio::export(codebook_data, "bfi.rds") # to R data structure file. The codebook ensures that the statistician has the complete background information necessary to undertake the analysis, and a codebook documents the data to make sure that the data is well understood and reusable in the future. Here we will show how to create codebooks in R using the dataMaid packages.

How to Automatically Document Data With the codebook Package to , Note, that you can also create a DataFrame by importing the data into R. For example, if you stored the original data in a CSV file, you can simply import that data into R, and then assign it to a DataFrame. In my case, I stored the CSV file on my desktop, under the following path: C:\\Users\\Ron\\Desktop\\ MyData.csv

Tutorial, A data frame is a two dimensional heterogeneous data structure. It is important to note that R lacks data structures with 0 dimensionality therefore single numbers or strings are represented as a vector having length 1. For any object the str() command provides detailed information about the object. A vector is the basic data structure in R and

Whether it's a personal list of phone numbers, a contact list for an organization, or a collection of coins, Microsoft Excel has built-in tools to keep track of data and find specific information. This article applies to Excel 2019, Excel 2016, Excel 2013, Excel 2010, Excel for Mac, Excel for Android, and Excel Online.

Very often, statisticians are sent data files that contain all the information listed in Section 2, but either through inconvenient codebooks (e.g. written in Word tables that are hard to access electronically by other programs, leading to “cut and paste” coding which needlessly duplicates efforts) or data file columns headers.

You can see HRP1001 table above, SAP System will insert data with SCLAS = P ( Personel ) After you start new hire using transaction code PA40, but if you use function module HR_MAINTAIN_MASTERDATA new relationship in table HRP1001 not update automatically but you need to update manually.